Für die Suche nach Inhalten geben Sie »Content:« vor den Suchbegriffen ein, für die Suche nach Orten geben Sie »Orte:« oder »Ort:« vor den Suchbegriffen ein. Wenn Sie nichts eingeben, wird in beiden Bereichen gesucht.

 

 

Albert Ludwigs Universität Freiburg, Mitochondrien stellen sich effizient auf veränderte Stoffwechselbedingungen einZoom Button

Mitochondrien bilden ein Netzwerk in der Zelle (hier grün markiert). Foto: Mariya Licheva, Universität Freiburg, Informationen zu Creative Commons (CC) Lizenzen, für Pressemeldungen ist der Herausgeber verantwortlich, die Quelle ist der Herausgeber

Albert Ludwigs Universität Freiburg, Mitochondrien stellen sich effizient auf veränderte Stoffwechselbedingungen ein

Albert Ludwigs Universität Freiburg, Mitochondrien stellen sich effizient auf veränderte Stoffwechselbedingungen ein

  • Mitochondrien stellen sich effizient auf veränderte Stoffwechselbedingungen ein

Freiburger Forscher weisen nach, dass dafür die Proteinkomplexe MICOS und ATP-Synthase miteinander kommunizieren können. Das ist ein Bestandteil für die wesentliche Funktion von Mitochondrien. Defekte in deren Zellatmung können zu schweren Erkrankungen beim Menschen führen. »Die Kommunikation zwischen den beiden Komplexen ist vermutlich der Schlüssel zu einer gut koordinierten Biogenese der inneren Mitochondrien-Membran.«

Eine aktuelle Studie erklärt einen wesentlichen Bestandteil für die einwandfreie Funktion von Mitochondrien: Die Proteinkomplexe MICOS und ATP Synthase können miteinander kommunizieren. Dr. Heike Rampelt und Prof. Dr. Nikolaus Pfanner am Institut für Biochemie und Molekularbiologie der Universität Freiburg haben diesen wichtigen Mechanismus entdeckt, der sicherstellt, dass sich die Mitochondrien für den Stoffwechsel effizient auf veränderte bedingungen einstellen können.Die Studie entstand in Zusammenarbeit mit den Arbeitsgruppen von Prof. Dr. Martin van der Laan von der Universität des Saarlandes, Prof. Dr. Claudine Kraft von der Universität Freiburg sowie Prof. Dr. Ida van der Klei von der Universität Groningen, Niederlande und umfasst biochemische Methoden, Fluoreszenzmikroskopie von lebenden Zellen und Elektronenmikroskopie, mit deren Hilfe die Membranarchitektur sichtbar gemacht werden kann. Die Arbeit erschien in der Fachzeitschrift Cell Reports.

Zellatmung der inneren #Mitochondrien #Membran

Mitochondrien, die Kraftwerke der Zelle, leisten einen enormen Beitrag zur Energieversorgung des Körpers, indem sie Stoffwechselprodukte mit Hilfe von Sauerstoff verbrennen. Diese Zellatmung findet in der inneren der beiden Mitochondrien-Membranen statt, die im Gegensatz zur äußeren Membran stark gefaltet ist. Der räumliche Aufbau dieser Einfaltungen, der sogenannten Cristae Membranen, wirkt sich maßgeblich auf die Effizienz der Zellatmung aus und ist wichtig für viele Funktionen von Mitochondrien. Daher wird die Architektur der Cristae genau kontrolliert und dynamisch an den Zellstoffwechsel angepasst. Defekte in diesen Prozessen führen zu schweren Erkrankungen beim Menschen.

Kommunikation von MICOS Komplex und ATP Synthase

Zwei Proteinkomplexe in der inneren Mitochondrien Membran, ohne die eine normale Membranarchitektur nicht möglich ist, sind die F1Fo ATP Synthase, die auch an der Bereitstellung von Energie beteiligt ist, sowie der MICOS Komplex (Mitochondrial Contact Site And Cristae Organizing System). Diese Proteinkomplexe gelten als Gegenspieler; sie sitzen an unterschiedlichen Stellen der inneren Membran und krümmen die Membran in entgegengesetzte Richtungen. Unklar war bislang, wie die Funktionen dieser beiden Proteinkomplexe aufeinander abgestimmt werden können. Das Team um Rampelt und Pfanner zeigt nun, dass MICOS und ATP Synthase miteinander kommunizieren können. Diese wechselseitige Kommunikation ist wesentlich für die einwandfreie Funktion der Mitochondrien. Eine Untereinheit von MICOS, Mic10, wandert zur ATP Synthase und stabilisiert die Zusammenlagerung mehrerer ATP Synthasen zu großen Komplexen. Diese neue regulatorische Funktion von Mic10 ist wichtig für den Stoffwechsel und eine effiziente Atmung. »Die Kommunikation zwischen den beiden Komplexen ist vermutlich der Schlüssel zu einer gut koordinierten Biogenese der inneren Mitochondrien Membran«, erklärt Rampelt.

Heike Rampelt, Nikolaus Pfanner und Claudine Kraft leiten Arbeitsgruppen am Institut für Biochemie und Molekularbiologie der Medizinischen Fakultät und forschen im Exzellenzcluster CIBSS der Albert Ludwigs Universität Freiburg im Bereich biologische Signalforschung.

Originalpublikation

H. Rampelt, F. Wollweber, M. Licheva, R. de Boer, I. Perschil, L. Steidle, T. Becker, M. Bohnert, I. van der Klei, M. C., van der Laan, N. Pfanner, N. (2022): Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth. In: Cell Reports, 38:110290. DOI: https://doi.org/10.1016/j.celrep.2021.110290

Content bei Gütsel Online …

 
Gütsel
Termine und Events

Veranstaltungen
nicht nur in Gütersloh und Umgebung

Dezember 2024
So Mo Di Mi Do Fr Sa
1234567
891011121314
15161718192021
22232425262728
293031
Februar 2025
So Mo Di Mi Do Fr Sa
1
2345678
9101112131415
16171819202122
232425262728
September 2025
So Mo Di Mi Do Fr Sa
123456
78910111213
14151617181920
21222324252627
282930
November 2025
So Mo Di Mi Do Fr Sa
1
2345678
9101112131415
16171819202122
23242526272829
30
Dezember 2025
So Mo Di Mi Do Fr Sa
123456
78910111213
14151617181920
21222324252627
28293031
Februar 2026
So Mo Di Mi Do Fr Sa
1234567
891011121314
15161718192021
22232425262728
September 2026
So Mo Di Mi Do Fr Sa
12345
6789101112
13141516171819
20212223242526
27282930
Oktober 2026
So Mo Di Mi Do Fr Sa
123
45678910
11121314151617
18192021222324
25262728293031
November 2042
So Mo Di Mi Do Fr Sa
1
2345678
9101112131415
16171819202122
23242526272829
30