Für die Suche nach Inhalten geben Sie »Content:« vor den Suchbegriffen ein, für die Suche nach Orten geben Sie »Orte:« oder »Ort:« vor den Suchbegriffen ein. Wenn Sie nichts eingeben, wird in beiden Bereichen gesucht.

 

 

Auf dem Weg zu schnelleren und effizienteren DatenspeichernZoom Button

Durch Laserpulse im Femtosekundenbereich können in einer antiferromagnetischen Domäne magnetische Wellen (sogenannte kohärente Spinwellen) angeregt werden (oben). Über die Domänenwände sind die magnetischen Wellen benachbarter Domänen auf der ultraschnellen Zeitskala miteinander gekoppelt (unten). Abbildung: Davide Bossini, Informationen zu Creative Commons (CC) Lizenzen, für Pressemeldungen ist der Herausgeber verantwortlich, die Quelle ist der Herausgeber

Auf dem Weg zu schnelleren und effizienteren Datenspeichern

orschungsteam mit Beteiligung der Universität Konstanz entdeckt magnetische Phänomene in Antiferromagneten, die den Weg für die Entwicklung schnellerer und effizienterer Datenspeicher ebnen könnten.

Wie verhalten und verbreiten sich magnetische Wellen in Antiferromagneten, Materialien, die als Kandidaten für den Datenspeicher der Zukunft gehandelt werden? Und welche Rolle spielen dabei sogenannte »Domänenwände«? Mit diesen Fragen beschäftigt sich die aktuelle Veröffentlichung eines internationalen Forschungsteams unter Leitung des Konstanzer Physikers Dr. Davide Bossini, die kürzlich in der Fachzeitschrift Physical Review Letters erschienen ist. In dem Artikel beschreiben die Forscher magnetische Phänomene in Antiferromagneten, die mit extrem kurzen Laserpulsen im Femotsekundenbereich ausgelöst werden können und mit deren Hilfe man den Materialien in Zukunft neue Funktionen für die Anwendung als energieeffiziente und ultraschnelle Datenspeicher verleihen könnte.

Der Bedarf an Speicherkapazitäten wächst schneller als die zugehörige Infrastruktur

Die rasante Zunahme von Big-Data-Technologien sowie der Nutzung von Cloud-basierten Serviceleistungen führt zu einem stetigen Wachstum des weltweiten Bedarfs sowohl an Datenspeichern als auch der immer schnelleren Verarbeitung von Daten. Derzeit verfügbare Technologien werden diesen jedoch nicht auf Dauer aufgefangen können. »Schätzungen gehen davon aus, dass der steigende Bedarf nur noch für ein begrenztes Zeitfenster von etwa zehn Jahren gedeckt werden kann, sofern keine neuen, effizienteren Technologen zur Datenspeicherung und -verarbeitung entwickelt werden«, berichtet Dr. Davide Bossini, Physiker an der Universität Konstanz und Erstautor der aktuellen Studie.

Um eine Daten-Krise abzuwenden, wird es allerdings nicht reichen, lediglich größere Mengen an Speicherkapazitäten zur Verfügung zu stellen. Zukunftsfähige Technologien müssten zusätzlich schneller und energieeffizienter werden als herkömmliche Massenspeicher. Eine Materialklasse, die als vielversprechende Kandidatin und Ressource für die Entwicklung der nächsten Generation von Informationstechnologie gehandelt wird, sind die sogenannten Antiferromagnete.

Der Aufbau von Antiferromagneten

Wir alle kennen Dauermagnete aus Eisen oder anderen sogenannten ferromagnetischen Materialien aus unserem Alltag. In ihnen entsteht durch die gleichgerichtete Anordnung der magnetischen Momente benachbarter Atome – die man sich wie kleine Kompassnadeln verbildlichen kann – eine magnetische Polarisation oder »Magnetisierung«, welche auch in der Umgebung des Magneten wirkt. Bei den sogenannten Antiferromagneten hingegen wechselt die Ausrichtung der magnetischen Momente zwischen benachbarten Atomen, sodass diese sich in Ihrer Wirkung gegenseitig aufheben. Antiferromagnete besitzen daher keine Netto-Magnetisierung – sie erscheinen nach außen hin »unmagnetisch«.

In ihrem Inneren unterteilen sich antiferromagnetische Körper in eine Vielzahl kleinerer Bereiche, sogenannte Domänen, die sich in der jeweiligen Orientierung der entgegengesetzt angeordneten magnetischen Momente unterscheiden. An ihren Grenzflächen sind diese Domänen durch Übergangsbereiche voneinander getrennt, die als »Domänenwände« bezeichnet werden. »Obwohl diese Übergänge in Antiferromagneten allgegenwärtig sind, war bisher wenig über den Einfluss der Domänenwände auf die magnetischen Eigenschaften von Antiferromagneten bekannt, insbesondere bei der Betrachtung sehr kurzer Zeitskalen«, so Bossini.

Magnetische Phänomene im Femtosekundenbereich

In ihrem aktuellen Fachartikel beschreiben die Forschenden, was passiert, wenn Antiferromagnete – in diesem Fall Nickeloxid-Kristalle – mit ultrakurzen Laserpulsen im Femtosekundenbereich angeregt werden. Die Femtosekundenskala umfasst Dauern, die derart kurz sind, dass selbst Licht in dieser Zeit nur sehr geringe Strecken zurücklegt: In einer Femtosekunde – dem billiardstel Bruchteil einer Sekunde – bewegt sich Licht um gerade einmal 0,3 Mikrometer, was dem Durchmesser eines kleinen Bakteriums entspricht.

Das internationale Forschungsteam konnte zeigen, dass Domänenwände eine aktive Rolle für die dynamischen Eigenschaften des Antiferromagneten spielen. Insbesondere ergaben die Versuche, dass magnetische Wellen mit unterschiedlichen Frequenzen im Material induziert, verstärkt und sogar über Domänengrenzen hinweg miteinander gekoppelt werden können. Dies ist allerdings ausschließlich in der Anwesenheit von Domänenwänden möglich. »Unsere Beobachtungen zeigen, wie die Allgegenwärtigkeit von Domänenwänden in Antiferromagneten potentiell ausgenutzt werden könnte, um das Material mit neuen Funktionen auf der ultraschnellen Zeitskala auszustatten«, erklärt Bossini die Bedeutung seiner Studie.

Wichtige Schritte in Richtung effizienterer Datenspeicher

Die Kopplung verschiedener magnetischer Wellen über die Domänenwände zeigt also eine Möglichkeit auf, die zeitliche und räumliche Ausbreitung magnetischer Wellen sowie den Energietransfer zwischen einzelnen Wellen im Material aktiv zu kontrollieren – und das im Femtosekundenbereich. Beides sind Voraussetzungen für die Verwendung der Materialien für die ultraschnelle Verarbeitung und Speicherung von Daten. 

Im Vergleich zu herkömmlichen Speichertechnologien wären derartige Antiferromagnet-basierte Technologien um einige Größenordnungen schneller, energieeffizienter, und sie könnten Daten in höherer Dichte speichern und verarbeiten. Durch das Fehlen einer Netto-Magnetisierung wären die Daten außerdem besser durch Störungen und Manipulation von außen geschützt. »Zukünftige Technologien, die auf Antiferromagneten basieren, würden also alle Anforderungen erfüllen, die an die nächste Generation von Datenspeichern gestellt werden. Sie hätten so das Potential, den steigenden Bedarf an Speicherplatz und Datenverarbeitungskapazitäten zu decken«, fasst Bossini zusammen.

Faktenübersicht

Originalpublikation: D. Bossini, M. Pancaldi, L. Soumah, M. Basini, F. Mertens, M. Cinchetti, T. Satoh, O. Gomonay, S. Bonetti (2021) Ultrafast Amplification and Nonlinear Magnetoelastic Coupling of Coherent Magnon Modes in an Antiferromagnet. Physical Review Letters. DOI: https://doi.org/10.1103/PhysRevLett.127.077202

Untersuchung der Rolle von Domänenwänden für die dynamischen Eigenschaften von Antiferromagneten im Femtosekundenbereich

Bei Anwesenheit von Domänenwänden können im Material (Nickeloxid) mithilfe von Laserpulsen magnetische Wellen mit unterschiedlichen Frequenzen induziert, verstärkt und über Domänengrenzen hinweg miteinander gekoppelt werden

Die aktive Kontrolle der zeitlichen und räumlichen Ausbreitung magnetischer Wellen sowie des Energietransfers zwischen einzelnen Wellen in Antiferromagneten sind vielversprechende Schritte in Richtung Nutzung der Materialien für zukunftsfähige Datenspeicher und -technologien 

Förderung: Deutsche Forschungsgemeinschaft (DFG), European Cooperation in Science and Technology (COST), Knut and Alice Wallenberg Foundation, Swedish Research Council (VR), European Research Council (ERC) und National Science Foundation (NSF).

Content bei Gütsel Online …

 
Gütsel
Termine und Events

Veranstaltungen
nicht nur in Gütersloh und Umgebung

November 2024
So Mo Di Mi Do Fr Sa
12
3456789
10111213141516
17181920212223
24252627282930
Dezember 2024
So Mo Di Mi Do Fr Sa
1234567
891011121314
15161718192021
22232425262728
293031
Februar 2025
So Mo Di Mi Do Fr Sa
1
2345678
9101112131415
16171819202122
232425262728
September 2025
So Mo Di Mi Do Fr Sa
123456
78910111213
14151617181920
21222324252627
282930
November 2025
So Mo Di Mi Do Fr Sa
1
2345678
9101112131415
16171819202122
23242526272829
30
Dezember 2025
So Mo Di Mi Do Fr Sa
123456
78910111213
14151617181920
21222324252627
28293031
Februar 2026
So Mo Di Mi Do Fr Sa
1234567
891011121314
15161718192021
22232425262728
September 2026
So Mo Di Mi Do Fr Sa
12345
6789101112
13141516171819
20212223242526
27282930
Oktober 2026
So Mo Di Mi Do Fr Sa
123
45678910
11121314151617
18192021222324
25262728293031
November 2042
So Mo Di Mi Do Fr Sa
1
2345678
9101112131415
16171819202122
23242526272829
30