Für die Suche nach Inhalten geben Sie »Content:« vor den Suchbegriffen ein, für die Suche nach Orten geben Sie »Orte:« oder »Ort:« vor den Suchbegriffen ein. Wenn Sie nichts eingeben, wird in beiden Bereichen gesucht.

 

 

Universität Regensburg: Neuartiges Mikroskop arbeitet mit dem Quantenzustand einzelner ElektronenZoom Button

Die weiße Struktur repräsentiert ein einzelnes Molekül, die Pfeile seinen Spin Quantenzustand und die Wellenlinien das Radiofrequenz Magnetfeld, welches die Elektronenspinresonanz treibt. Letztere wird mit der Spitze eines Rasterkraftmikroskops detektiert. Bild: Eugenio Vázquez, Informationen zu Creative Commons (CC) Lizenzen, für Pressemeldungen ist der Herausgeber verantwortlich, die Quelle ist der Herausgeber

Universität Regensburg: Neuartiges Mikroskop arbeitet mit dem Quantenzustand einzelner Elektronen

Universität Regensburg: Neuartiges Mikroskop arbeitet mit dem Quantenzustand einzelner Elektronen

Universität Regensburg, 6. Dezember 2023

#Physiker der #Universität #Regensburg haben einen Weg gefunden, den #Quantenzustand einzelner #Elektronen mit einem atomar auflösenden #Mikroskop zu manipulieren. Die Ergebnisse der Studie wurden jetzt im renommierten Fachmagazin »#Nature« veröffentlicht.

Die uns umgebende Welt bestehet aus #Atomen und #Molekülen. Die Moleküle sind so winzig, dass selbst ein Staubkorn unzählige von ihnen enthält. Umso faszinierender ist es, dass es heutzutage möglich ist, solche Moleküle mit einem Mikroskop, dem so genannten Rasterkraftmikroskop, präzise abzubilden. Dieses funktioniert ganz anders als ein Lichtmikroskop: Es basiert auf der Detektion winziger Kräfte zwischen einer Spitze und dem zu untersuchenden Molekül (siehe Illustration). Auf diese Weise kann man sogar die innere Struktur eines Moleküls abbilden. Obwohl man das Molekül gleichsam beobachten kann, bedeutet dies nicht, dass man alle seine Eigenschaften kennt. Es ist zum Beispiel allein schon sehr schwer zu bestimmen, aus welchen Atomen das Molekül besteht.

Glücklicherweise gibt es andere Instrumente und Methoden, mit denen man die Zusammensetzung von Molekülen bestimmen kann. Eines davon ist die Elektronenspinresonanz, die auf ähnlichen Prinzipien wie ein #MRT #Scanner in der #Medizin beruht. Bei der #Elektronenspinresonanz benötigt man jedoch in der Regel unzählige Moleküle, um ein messbares Signal zu erhalten. Auf diese Weise kann man nicht auf die Eigenschaften jedes einzelnen Moleküls zugreifen, sondern nur auf deren gemittelten Signale.

Forschende der Universität Regensburg haben unter der Leitung von Prof. Dr. Jascha Repp, vom Institut für Experimentelle und #Angewandte #Physik der #UR, jetzt die Elektronenspinresonanz in die Rasterkraftmikroskopie integriert. Dabei wird die Elektronenspinresonanz direkt mit der Spitze des Mikroskops detektiert, so dass das Signal nur von einem einzelnen Molekül stammt. Auf diese Weise konnten die Forschenden ein Molekül nach dem anderen einzeln charakterisieren und es ließ sich leicht feststellen, aus welchen Atomen das jeweilige Molekül bestand, das sie gerade abgebildet hatten. »Wir konnten sogar Moleküle unterscheiden, die sich nicht in der Art der Atome unterscheiden, aus denen sie zusammengesetzt sind, sondern nur in ihren Isotopen, das heißt, in der Zusammensetzung der Atomkerne«, fügt Lisanne Sellies, die Erstautorin dieser Studie, hinzu.

»Noch faszinierender ist für uns jedoch eine weitere Möglichkeit, die die Elektronenspinresonanz mit sich bringt«, erklärt Prof. Dr. Repp, »mit dieser Technik lässt sich der Quantenzustand der im Molekül vorhandenen Elektronen, nämlich der des sogenannten #Spins, steuern.« Dies wird in der Illustration durch die kleinen farbigen Pfeile veranschaulicht. Aber warum ist das so spannend? #Quantencomputer speichern und verarbeiten Informationen, die in einem Quantenzustand kodiert sind. Um eine Berechnung durchzuführen, müssen Quantencomputer einen Quantenzustand manipulieren, ohne dass die Information durch sogenannte Dekohärenz verloren geht.

Die Regensburger Forschenden zeigen, dass sie mit ihrer neuen Technik den Quantenzustand des Spins in einem einzelnen Molekül viele Male manipulieren konnten, bevor der Zustand dekohärent wurde. Da die Mikroskopietechnik es erlaubt, die individuelle Nachbarschaft des Moleküls abzubilden, könnte die neu entwickelte Technik helfen zu verstehen, wie die Dekohärenz in einem #Quantencomputer von der Umgebung auf atomarer Ebene abhängt, und möglicherweise wie man sie vermeiden kann. Mehr

Content bei Gütsel Online …

 
Gütsel
Termine und Events

Veranstaltungen
nicht nur in Gütersloh und Umgebung

November 2024
So Mo Di Mi Do Fr Sa
12
3456789
10111213141516
17181920212223
24252627282930
Dezember 2024
So Mo Di Mi Do Fr Sa
1234567
891011121314
15161718192021
22232425262728
293031
Februar 2025
So Mo Di Mi Do Fr Sa
1
2345678
9101112131415
16171819202122
232425262728
September 2025
So Mo Di Mi Do Fr Sa
123456
78910111213
14151617181920
21222324252627
282930
November 2025
So Mo Di Mi Do Fr Sa
1
2345678
9101112131415
16171819202122
23242526272829
30
Dezember 2025
So Mo Di Mi Do Fr Sa
123456
78910111213
14151617181920
21222324252627
28293031
Februar 2026
So Mo Di Mi Do Fr Sa
1234567
891011121314
15161718192021
22232425262728
September 2026
So Mo Di Mi Do Fr Sa
12345
6789101112
13141516171819
20212223242526
27282930
Oktober 2026
So Mo Di Mi Do Fr Sa
123
45678910
11121314151617
18192021222324
25262728293031
November 2042
So Mo Di Mi Do Fr Sa
1
2345678
9101112131415
16171819202122
23242526272829
30